top of page
Nupack code

This code was entered into Nupack Design mode. Feel free to copy this code if you want to check or expand upon our designs. It should work via copy and pasting but errors can occur if going via word processing programs.

 

Tact is the structure of our switch in the translationally active state.

Toff is the structure in the translationally inactive state. 

Apt1 is the structure of our trigger sequence.

A . represents a single unpaired nucleotide.

( and ) represent two nucleotides in a base pair (can be separated by other paired or unpair nculeotides.

+ is used to separate strands

​

10x Buffer recipe

​

50mM NaCl: 29.22g, 58.44g/mol

10mM MgCl2: 20.33g, 203.3g/mol

10mM Tris: 12.114g, 121.14g/mol

​

Made up to 1L with MilliQ water then adjusted to pH8 using HCl and NaOH.

All of our data can be found with this link: https://drive.google.com/open?id=0B6B6-qDOpcS_TjZOUlpJc2VKcVk

This includes all of our Nupack code, diagram components, cropped and contrasted gels and plate reader data.

​

Nupack code
ssDNA sequences
Plasmid sequences

5’ FAM fluorophore-labelled oligo:

 

/56-FAM/CCTAAATTGTTATCCGCTCA

 

3’ BHQ Quencher-labelled oligo:

 

CTCACTCACCATATCGTATC/3BHQ_1/

 

5’ FAM fluorophore labelled “Mimic” oligo:

 

/56-FAM/TATCTCCTCT

 

Homo Sym 8:

 

TGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTACAAGAATAGGAGTAGAGGAGATACGATATGGTGAGTGAG

 

NC homo:

 

TCCTCTACTCCTATTCTTGTACTCCTATTCTTGTAGAGGA

 

1*:

 

ACTCCTATTCTTGT

 

1*1*:

 

ACTCCTATTCTTGTACTCCTATTCTTGT

 

Hetero sym 8:

 

TGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTGAGGGTAAGACAGTAGAGGAGATACGATATGGTGAGTGAG

 

2*:

 

ACTGTCTTACCCTC

 

NC hetero:

 

TCCTCTACTGTCTTACCCTCACTCCTATTCTTGTAGAGGA

 

2*1*:

 

ACTGTCTTACCCTCACTCCTATTCTTGT

 

Single binding site:

 

TGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTGTAGAGGAGATACGATATGGTGAGTGAG

 

NC single binding site:

 

TCCTCTACACTCCTATTCTTGTAGAGGA

 

aabb20:

 

TGAGCGGATAACAATTTAGGCAAGACAAAGACAAGACAAAGACGAAACGAGAACAAGACAACGGAGACATAGAGGAGACATAGAGATACGATATGGTGAGTGAG

 

acdb20:

 

TGAGCGGATAACAATTTAGGCAAGACAAAGACGAAACATAGACGAAACGAGAACAAGACAACCACAGACCAGAGGAGACATAGAGATACGATATGGTGAGTGAG

 

a*b*:

 

TCTTTGTCTTGTCTATGTCTCC

 

c*d*:

 

TCTATGTTTCGTCTGGTCTGTG

 

a*a*b*b*:

 

TCTTTGTCTTGTCTTTGTCTTGTCTATGTCTCCTCTATGTCTCC

 

c*a*b*d*:

 

TCTATGTTTCGTCTTTGTCTTGTCTATGTCTCCTCTGGTCTGTG

 

Vrigg:

 

TCTACTCCTATTCTTGTAGA

 

Mimic switch:

 

TCCTCTACAAGAATAGGAGTACAAGAATAGGAGTAGAGGAGATAGATACGATATGGTGAGTGAG

Top

Supplementary Information

Plasmid sequences for in vivo testing

Homo Sym 8:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGACAAGAATAGGAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTACAAGAATAGGAGTAGAGGAGATACGATATGGTGAGTGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Homo Sym 12:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGACAAGAATAGGAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTGTGCACAAGAATAGGAGTACAAGAATAGGAGTGCACAGAGGAGATGGAATATGGTGAGTGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Homo Sym 18:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGACAAGAATAGGAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTATCTTCGTGCACAAGAATAGGAGTACAAGAATAGGAGTGCACGAAGATAGAGGAGATGGAGTATGGTGAGTGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Homo Sym Long:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTGTGACACCTTTATCACTGATATCGATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGGTAAATGGAGATAGGGTTACATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGCATCGTTTATCTCCTCTGAAAATGGAGATAGGGTTACGTAAATGGAGATAGGGTTACAGAGGAGATAAACGATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Asym:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTGATCGCAGAATGGTATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGCTAGGACAATAACTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTAGGACAATAACTCTAGGACAATAACTAGAGGAGACGAACGATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Single Binding Site:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGACAAGAATAGGAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTGTAGAGGAGATACGATATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

aabb50:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTGTGACACCTTAATCACTGATACTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAAGCGGAGACATAGACAAGACAAAGAATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGCAAGACAAAGACAAGACAAAGAAACAATCATAAACATAACACTAACATCACTACAACTATCAATAACTAACAGGAGACATAGAGGAGACATAGAATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

aabb20:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTGTGACACCTTAATCACTGATACTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAAGCGGAGACATAGACAAGACAAAGAATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGCAAGACAAAGACAAGACAAAGACGAAACGAGAACAAGACAACGGAGACATAGAGGAGACATAGAATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

aabb6:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTGTGACACCTTAATCACTGATACTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAAGCGGAGACATAGACAAGACAAAGAATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGCAAGACAAAGACAAGACAAAGATACAACGGAGACATAGAGGAGACATAGAATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

AB:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACAGGTTAATGAGTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGCTCGGGATGGGAAGACAAAGACATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAAGAAACGAAGACAAAGACACAGAGGAGACTCGGGATGGGGGTGAGCGAGCTAATCAAAGAAAATATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

AABB:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACAGGTTAATGAGTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGCTCGGGATGGGAAGACAAAGACATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAAGAAACGAAGACAAAGACAAGACAAAGACACAGAGGAGACTCGGGATGGGCTCGGGATGGGGAGTGAGCGAACTAATCAAAGAAAATATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

AAABBB:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACAGGTTAATGAGTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGCTCGGGATGGGAAGACAAAGACATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAAGAAACGAAGACAAAGACAAGACAAAGACAAGACAAAGACACAGAGGAGACTCGGGATGGGCTCGGGATGGGCTCGGGATGGGGTGAGCGAACTAATCAAAGAAAATATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Hetero 1-2 Ribozyme:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAATCACTGATAGTGTGCTCTGTCTTACCCTCGGTATATCTCCTTCGTGGAATCCAGGATCCATCCCTACGCTGGCATTATCCAGATCAGGTGATACGGGTATTTCTCAGCCTTCACGCAGAAGGGCACCCCGAGGATTTCGTCCTATTTGGGACTCATCAGCTGGATGTACCGAAGGAGAAATGCCTGGTTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAAATATACAAGAATAGGAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTCCTCTACAAGAATAGGAGTGAGGGTAAGACAGTAGAGGAGATACGATATGGTGAGTGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

OffTrig:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGTCTGTGTGAGAGGTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGATAGAGGAGACAAATGATGGATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATTGAGCTCAAGCTTAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGACGAAGACAAAGACAAAGATACAAAGACAAAGATAGAGGAGACAAATGATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

TripTrig:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCAGTGATACTAATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGTATTAACACGAATAATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGTGTCCTATTAACACGAATACTTTTATTAACACGAATATATTAACACGAATAAAAGAGGAGAAATAGGACATGGTGTCCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

ToeTrig:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCAACTATCTTATTCACTTATCAACATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAATCGACGCGTCAGGACTTATATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATGAGCTCAAGCTTAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAAATGGGACGCGTCAGGACTTATGCGAAACAGAGGAGAATAAGTATGGACGCGTCAGGACTTATTGTGAGCGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

 

Positive Control:

 

GAATTCGCGGCCGCTTCTAGAGGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGAGACTGTCTGACACCTTAATCACTGATAGTCATTGCCATGAATGATCCCGAAGGATCATCAGAGTATGTGGGAGCCCACACTCTACTCGACAGATACGAATATCTGGACCCGACCGTCTCCCACATACACATGGCAACGACGAGAATAGTAGTATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTTTCTTGCGAAGCGGCATGCATAAGCTTGGCTCACCTTTAGGTGAGCCTTTCTGCGAATGTGCCTGTCAAATTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTAGGACGAAGACAAAGACAAAGATACAAAGACAAAGATAGAGGAGACAAATGATGGTGAGTGAGTTGATTAAAGAAAACATGCACATGAAGCTGTACATGGAAGGCACCGTCAATAACCATCACTTTAAGTGTACATCCGAGGGAGAGGGCAAGCCTTACGAGGGTACGCAGACTATGCGTATCAAAGCTGTTGAAGGTGGGCCTCTTCCATTCGCATTCGATATTTTGGCAACTTCTTTCATGTACGGATCAAAGACATTCATCAATCACACTCAAGGTATTCCTGACTTTTTTAAGCAGAGCTTTCCAGAGGGTTTTACGTGGGAGCGTGTCACAACATACGAAGACGGTGGAGTCTTAACCGCGACTCAGGATACATCGCTTCAAGATGGTTGCCTTATCTACAATGTTAAGATCCGTGGTGTGAACTTCCCGTCTAACGGACCCGTCATGCAAAAGAAAACACTGGGTTGGGAGGCAAGCACTGAAACGTTGTATCCAGCAGATGGTGGTTTGGAGGGTCGTGCTGACATGGCTTTAAAGTTGGTTGGTGGTGGACATCTTATCTGTAACCTTAAAACGACGTACCGTTCTAAGAAGCCCGCTAAGAATCTGAAGATGCCTGGCGTATATTACGTCGATCGTCGCTTAGAGCGCATCAAGGAGGCAGATAAAGAGACTTATGTAGAACAGCATGAAGTGGCAGTGGCTCGCTATTGCGATTTACCCTCTAAGTTAGGTCACCGTTGATAACCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTATAATTACAATATACTAGTAGCGGCCGCTGCAG

These were ordered as dsDNA from Twist Biosciences within a Kanamycin-resistance Twist plasmid vector with a ColE1 origin:

Activatory:

Homo sym 8 code used to define 1* sequence. (RBS sequence from Toehold paper. First 10 mKate2 codons used as domain gene):

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 5   

 

# target structure defined in dot-parens-plus notation

structure apt =  U14                                  

structure Tact = .. ...... (((((((((((((( (((((((((((((( ...... ........ .......... .......... .......... +))))))))))))))+))))))))))))))

structure Toff = .. (((((( ((............ ............)) )))))) ........ .......... .......... ..........

 

# define sequence domains

domain end1 = N2

domain stem1 = N6

domain bs= N14

domain stem2= AGA GGA

domain end2= GA N6

domain gene= ATGGTGAGCGAGCTGATTAAGGAGAACATG

 

# thread domains onto strands

strand switch1 = end1 stem1 bs bs stem2 end2 gene

strand apt1 = bs*

 

# thread strands onto target structures

Tact.seq =  switch1 apt1 apt1

Toff.seq = switch1

apt.seq = apt1

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

 

Positive control (both Tact and Toff transcriptionally active):

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 10   

 

# target structure defined in dot-parens-plus notation

structure apt = U14                                  

structure Tact = .. ...... .............. .............. ...... ........ .......... .......... ..........

structure Toff = .. ...... .............. .............. ...... ........ .......... .......... ..........

 

# define sequence domains

domain end1 = N2

domain stem1 = N6

domain bs= ACAAGAATAGGAGT

domain ns= N14

domain stem2= AGA GGA

domain end2= GA N6

domain gene= ATGGTGAGCGAGCTGATTAAGGAGAACATG

 

# thread domains onto strands

strand switch1 = end1 stem1 ns ns stem2 end2 gene

strand apt1 = bs*

 

# thread strands onto target structures

Tact.seq =  switch1

Toff.seq = switch1

apt.seq = apt1

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

 

Homo sym Long:

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 10   

 

# target structure defined in dot-parens-plus notation

structure apt =  U20                                  

structure Tact = .. ................. (((((((((((((((((((( (((((((((((((((((((( ................. ...........................         + ))))))))))))))))))))+))))))))))))))))))))

structure Toff =  .. ((((((((((((((((( ((((................ ................)))) ))))))))))))))))) ...........................

 

# define sequence domains

domain end = N2

domain stem1 = N17

domain bs= N20

domain stem2= AGA GGA  GAN NNN NN ATG

domain gene= GTGAGCGAGCTGATTAAGGAGAACATG

 

# thread domains onto strands

strand switch1 = end stem1 bs bs stem2 gene

strand apt1 = bs*

 

# thread strands onto target structures

Tact.seq =  switch1 apt1 apt1

Toff.seq = switch1

apt.seq = apt1

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

 

Homo Sym 12 using 1* sequence defined above. Modified from homo sym 8. Similar process used for homo sym 18.

 

# parameters for NUPACK design

material = rna    

temperature = 37    

dangles = none    

trials = 5   

 

# target structure defined in dot-parens-plus notation

structure apt =  U14               

structure Toff = (((( (((( (((( ............ ............ )))) )))) )))) .... .......... .......... ..........

structure Tact = .......... (((((((((((((( (((((((((((((( .......... .... .......... .......... .......... + )))))))))))))) + ))))))))))))))

 

# define sequence domains

domain stem1 = N10

domain bs = ACAAGAATAGGAGT

domain stem2 = AGA GGA GA NN

domain spacer = N4

domain gene = ATGGTGAGCGAGCTGATTAAGGAGAACATG

 

# thread domains onto strands

strand switch1 = stem1 bs bs stem2 spacer gene

strand apt1 = bs*

 

# thread strands onto target structures

Tact.seq =  switch1 apt1 apt1

Toff.seq = switch1

apt.seq = apt1

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY

 

Hetero sym 8 using previously defined 1* sequence and undefined 2*:

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 5   

 

# target structure defined in dot-parens-plus notation

structure aptA =  U14 

structure aptB =  U14                                

structure Tact = .. ...... (((((((((((((( (((((((((((((( ...... ........ .......... .......... .......... +))))))))))))))+))))))))))))))

structure Toff = .. (((((( ((............ ............)) )))))) ........ .......... .......... ..........

 

# define sequence domains

domain end1 = N2

domain stem1 = N6

domain bsA= ACAAGAATAGGAGT

domain bsB= N14

domain stem2= AGA GGA

domain end2= GA N6

domain gene= ATGGTGAGCGAGCTGATTAAGGAGAACATG

 

# thread domains onto strands

strand switch1 = end1 stem1 bsA bsB stem2 end2 gene

strand apt1 = bsA*

strand apt2 = bsB*

 

# thread strands onto target structures

Tact.seq =  switch1 apt2 apt1

Toff.seq = switch1

aptA.seq = apt1

aptB.seq = apt2

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

 

Repressive:

aabb20 by splitting the domains a and b within the trigger. Later changed to loops of 6 and 50 with same domain sequences:

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 5   

 

# target structure defined in dot-parens-plus notation

structure tact = U100

structure toff = ......((((((((((( ((((((((((( .......... ..........   ((((((((((( ((((((((((( .......... .......... ..........+)))))))))))+)))))))))))+)))))))))))+)))))))))))

structure apta=U11

structure aptb=U11

​

# define sequence domains

domain a = N11

domain b = GGA GAN NNA GA

domain end = N6

domain end2= ATGGTGAGCGAGCTGATTAAGGAGAACATG

domain loop= N20

​

# thread domains onto strands

strand switch1 = end a a loop b b end2

strand apt1 = a*

strand apt2 = b*

​

# thread strands onto target structures

tact.seq = switch1

toff.seq = switch1 apt2 apt2 apt1 apt1

apta.seq= apt1

aptb.seq= apt2

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

  

acdb20 using domains a and b specified from above:

 

# parameters for NUPACK design

material = rna   

temperature = 37   

dangles = none   

trials = 5   

 

# target structure defined in dot-parens-plus notation

structure tact = U130

structure toff = ......((((((((((( ((((((((((( .......... ..........  .......... .......... ..........  ((((((((((( ((((((((((( .......... .......... ..........+)))))))))))+)))))))))))+)))))))))))+)))))))))))

structure apta=U11

structure aptb=U11

structure aptc=U11

structure aptd=U11

​

# define sequence domains

domain a = CAAGACAAAGA

domain b = GGAGACAUAGA

domain c = N11

domain d = GGAGA N6

domain end = N6

domain end2= ATGGTGAGCGAGCTGATTAAGGAGAACATG

domain loop= AACAATCATAAACATAACACTAACATCACTACAACTATCAATAACTAACA

​

# thread domains onto strands

strand switch1 = end c a loop b d end2

strand apt1 = a*

strand apt2 = b*

strand apt3 =c*

strand apt4= d*

​

# thread strands onto target structures

tact.seq = switch1

toff.seq = switch1 apt4 apt2 apt1 apt3

apta.seq= apt1

aptb.seq= apt2

aptc.seq= apt3

aptd.seq= apt4

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY   

 

AABB design to get domain sequences, then manually changed to make AB and AAABBB, using Salis RBS calculator and an E. coli codon table:

 

# parameters for NUPACK design

material = rna    

temperature = 37    

dangles = none    

trials = 5    

 

# target structure defined in dot-parens-plus notation

structure tact = U130

structure toff = ......((((((((((( ((((((((((( .......... .......... .......... .......... ..........   ((((((((((( ((((((((((( .......... .......... ..........+)))))))))))+)))))))))))+)))))))))))+)))))))))))

structure apta=U11

structure aptb=U11

 

# define sequence domains

domain A = N11

domain B = CGGCUC AUG UC

domain end = N6

domain end2= GTG AGC GAG CTG ATT AAG GAG AAC ATG CAC

domain rbs = AGA GGA GA

domain loop= N42

 

# thread domains onto strands

strand switch1 = end A A loop rbs B B end2

strand apt1 = A*

strand apt2 = B*

 

# thread strands onto target structures

tact.seq = switch1

toff.seq = switch1 apt2 apt2 apt1 apt1

apta.seq= apt1

aptb.seq= apt2

 

# prevent sequence patterns

prevent = AAAA, CCCC, GGGG, TTTT, CCGG, GGCC, CGCG, GCGC, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW, YYYYYY

ssDNA sequences used for in vitro testing

Ordered as ssDNA from a combination of IDT and Sigma Aldrich

Buffer recipe
Data link
Data link
bottom of page